
Atomic Energy Central School No. 4, Rawatbhata

Class XI (Physics, Chemistry, Mathematics/Biology)

Multiple Choice Questions Examination - July (2019-20)

Name of student:	Class: Roll No	
General Instructions: 1. Darken the ap	opropriate circle in the OMR answer sheet.	
2. Each question carries 1 mark. There	is no negative marking.	
	Physics	
	our observables a, b, c and d as follows :	1
$P=rac{a^3b^2}{\sqrt{c}d}$ The percentage errors of	measurement in a, b, c and d are 1% , 3% ,	
4% and $2%$,respectively. What is the	e percentage error in the quantity P?	
a) 15%	b) 13%	
c) 12%	d) 11%	
2. In SI system the fundamental units	are	1
a) meter, kilogram, second,	b) meter, Newton, second,	
ampere, Kelvin, mole and watt	ampere, Kelvin, mole and	
	candela	
c) meter, kilogram, second,	d) meter, kilogram, second,	
coulomb, Kelvin, mole and	ampere, Kelvin, mole and	
candela, horse power	candela	
3. Joule is the SI unit of		1
a) power	b) acceleration	
c) force	d) work	
4. The number of significant digits in Θ	$6.032 \; \mathrm{N} \; \mathrm{m}^{-2} \; \mathrm{is}$	1
a) 6	b) 3	
c) 4	d) 5	
5. The number of significant digits in 4	18,923 is	1
a) 2	b) 4	
c) 5	d) 3	
6. Fundamental or base quantities are	arbitrary. In SI system these are	1
a) length, mass, force, electric	b) as length, mass, time, electric	
current, thermodynamic	charge, thermodynamic	
temperature, amount of	temperature, amount of	
substance, and luminous	substance, and luminous	
intensity	intensity	
	4	

13.	.3. The mass of a box measured by a grocer's balance is 2.300 kg. Two gold pieces of masses 20.15 g and 20.17 g are added to the box. What is the difference in		1
	the masses of the pieces to correct si		
	a) 0.01 g	b) 0.02 g	
	c) 0.019 g	d) 0.022 g	
14.	Dimensional analysis can be used to		1
	a) check the validity of an	b) deducing relations among the	
	equation	physical quantities	
	c) To check integration of the	d) check the order of an	
	equation	equation	
1 5.	Percentage error δa is given by		1
	a) $\delta \mathrm{a} = \left(\Delta \mathrm{a}_{\mathrm{mean}}/\mathrm{a}_{\mathrm{mean}} ight)$ 80%	b) $\delta \mathrm{a} = (\Delta \mathrm{a}_{\mathrm{mean}}/\mathrm{a}_{\mathrm{mean}})$ 100 $\%$	
	c) $\delta \mathrm{a} = (\Delta \mathrm{a}_{\mathrm{mean}}/\mathrm{a}_{\mathrm{mean}})$ 70 $\%$	d) $\delta \mathrm{a} = \left(\Delta \mathrm{a}_{\mathrm{mean}}/\mathrm{a}_{\mathrm{mean}}\right)$ 200 $\%$	
16.	Measurement of a physical quantity	is essentially the	1
	a) process of comparing with a	b) process of observing the	
	standard using an instrument	physical quantity	
	c) process of taking readings on	d) process of subdividing the	
	an instrument	physical quantity	
17.	Physical quantities are		1
	a) quantities such as kilos,	b) quantities such as length,	
	pounds and gallons	mass, time, electric current,	
		thermodynamic temperature,	
		amount of substance, and	
		luminous intensity	
	c) quantities such as pounds,	d) quantities such as degrees,	
	dollars and rupees	radians and steradians	
18.	The length, breadth and thickness of	f a rectangular sheet of metal are 4.234 m,	1
	1.005 m, and 2.01 cm respectively. G	ive the area of the sheet to correct	
	significant figures.		
	a) 8.722 m ²	b) 8.72 m^2	
	c) 8.7221 m ²	d) 8.8 m^2	
19.	Estimate the average mass density	of a sodium atom assuming its size to be	1
	0		
	about 2.5 \boldsymbol{A} . (Use the known values	s of Avogadro's number and the atomic	
	mass of sodium). Compare it with t	he density of sodium in its crystalline	
		2	

	phase: 970 kgm ⁻³ . Are the two densiwhy?	ties of the same order of magnitude? If so,	
20	a) $\cong 4.67 \times 10^3 kgm^{-3}$. In the solid phase atoms are tightly packed, so atomic mass density is not close to the mass density of the solid. c) $\cong 0.7 \times 10^7 kgm^{-3}$. In the solid phase atoms are tightly packed, so atomic mass density is close to the mass density of the solid.	solid phase atoms are tightly packed, so atomic mass density is close to the mass density of the solid d) $\cong 0.75 \times 10^3 kgm^{-3}$. In the solid phase atoms are tightly packed, so atomic mass density is close to the mass density of the solid	1
20.	The number of significant digits in 9		1
	a) 4	b) 1	
21	c) 3 For one dimensional motion displac	d) 5	1
21.	_		1
	a) change in position: $\Delta { m x} = { m x}_2 - { m x}_1$	b) change in position: $\Delta \mathbf{x} = (\mathbf{x}_2 + \mathbf{x}_1)/2$	
	$\Delta x = x_2 - x_1$ c) change in position:	d) $\Delta x = (x_2 + x_1)/2$	
	$\Delta \mathbf{x} = \mathbf{x}_2 + \mathbf{x}_1$	$a = 2(a_2 + a_1)$	
22.		and accelerates at $10.0\mathrm{m/s^2}$ for the	1
	entire distance of 400 m .How long of	,	
	distance in s?		
	a) 9.01	b) 8.33	
	c) 10.2	d) 8.94	
23.	A stone thrown from the top of a bu	ilding is given an initial velocity of 20.0	1
	m/s straight upward. Determine the	time in seconds at which the stone	
	reaches its maximum height. g =9.8	$\mathrm{m}/\mathrm{sec}^2$	
	a) 2.8	b) 2.04	
	c) 1.67	d) 2.7	
24.		me t=0. It accelerates at 2 m / $ m s^2$ on seeing	1
	police .What is its velocity in m/s at		
	a) 6	b) 3	
	c) 4	d) 7	

	25. A particle moves along the x axis. It		1
	$x=2.00+3.00t-4.00t^2$ with x in meters and t in seconds. Determine its		
	position in m at the instant it change	es direction	
	a) 3.21	b) 1.97	
	c) 2.22	d) 2.56	
:		e smoothly slowing down to a final speed	1
	of 2.80 m/s. Find its acceleration in 1	$ m m/s^2$	
	a) -0.448	b) -0.368	
	c) -0.3878	d) -0.4756	
	27. A stone thrown from the top of a bu	ilding is given an initial velocity of 20.0	1
	m/s straight upward. Determine the	maximum height it travels in meters. g	
	=9.8 m $/ sec^2$		
	a) 15.4	b) 25.4	
	c) 30.4	d) 20.4	
	28. A jet lands on an aircraft carrier at 3	30 m/s. It stops in 2.0 s? What is the	1
	displacement of the plane in m whil	le it is stopping?	
	a) 45	b) 30	
	c) 35	d) 40	
:	29. Path length is a		1
	a) tensor	b) Derived unit	
	c) scalar	d) vector	
	30. A stone thrown from the top of a bu	ilding is given an initial velocity of 20.0	1
	m/s straight upward. Determine the	time in seconds at which the stone	
	returns to the height from which it	was thrown.	
	$g = 9.8 \text{ m} / \text{sec}^2$		
	a) 4.08	b) 3.45	
	c) 4.44	d) 5.32	
	31. A truck has a velocity of 3 m /s at tin	ne t=0. It accelerates at 3 m $/\mathrm{s}^2$ on seeing	1
	police .What is its velocity in m/s at	a time of 2 sec	
	a) 7	b) 9	
	c) 12	d) 8	
3	2. Instantaneous velocity or simply ve	_	1
	a) $\lim_{ ext{t} o 0}rac{\Delta x}{\Delta t}$	b) $\lim_{t\to\infty} \frac{\Delta x}{\Delta t}$	
	c) $\lim_{ ext{t} o 0}rac{\Delta x}{2\Delta t}$	d) $\lim_{ ext{t} o 1} rac{\Delta x}{\Delta t}$	
	€ -70	5	
		J	

33. A jet lands on an aircraft carrier at 30 m/s. What is its acceleration if it stops in $$ 1		1
2.0 s?		
a) $20 { m m s}^{-2}$	b) -20 ms^{-2}	
c) -15 ${ m ms}^{-2}$	d) -10 ${\rm ms}^{-2}$	
34. A truck accelerates at 1 m / sec^2 from	m rest. What is its velocity in m/s at a time	1
of 2 sec?		
a) 2	b) 4	
c) 1	d) 3	
35. Average velocity is defined as		1
a) the change in path length (b) the change in average path	
$\Delta \mathbf{x}$) divided by the time	length ($\Delta \mathbf{x}$) divided by the time	
intervals ($\Delta \mathbf{t}$), in which the	intervals ($\Delta \mathbf{t}$), in which the	
displacement occurs	displacement occurs	
c) the change in average	d) the change in position or	
distance from origin (Δx)	displacement ($\Delta {f x}$) divided by	
divided by the time intervals (the time intervals (Δt), in	
Δt), in which the displacement	which the displacement occurs	
occurs		
36. Two parallel rail tracks run north-so	outh. Train A moves north with a speed of	1
54 km/ hr, and train B moves south	with a speed of 90 km/ hr. What is the	
velocity of a monkey running on the	e roof of the train A against its motion	
(with a velocity of 36 km/hr with res	spect to the train A) as observed by a man	
standing on the ground in m/s ? Cho	oose the positive direction of x-axis to be	
from south to north		
a) 5.0	b) 3	
c) 8	d) 11	
37. A particle moves along the x axis. It		1
$x=2.00+3.00t-4.00t^2$ with x i	n meters and t in seconds. Determine its	
velocity in m/s when it returns to th	e position it had at t = 0.	
a) -2.54	b) -3.0	
c) -2.75	d) -4.02	
	m rest, accelerating at $2.00 \mathrm{m/s^2}$ until it	1
	ne truck travels for 20.0 s at constant speeding the truck in a uniform manner in an	
	ge velocity in m/s of the truck for the	

motion described?

a) 15.7	b) 16.2	
c) 154	d) 17.5	
39. A stone thrown from the top of a bu	ilding is given an initial velocity of 20.0	1
	he building is 50.0 m. determine the	
velocity in m/sec when the stone hit	s the ground. g =9.8 m / $ m sec^2$	
a) -27.4	b) -33.8	
c) -39.7	d) -37.1	
40. A truck covers 40.0 m in 8.50 s while	e smoothly slowing down to a final speed	1
of 2.80 m/s. Find its original speed in	n m/s	
a) 6.61	b) 8.61	
c) 5.61	d) 7.61	
	Chemistry	
41. According to Avogadro Law equal	volumes ofall gases at the same	1
temperature and pressure should c	contain number of molecules .	
a) similar	b) equal	
c) different	d) unequal	
42. SI unit of density is		1
a) kg m^{-2}	b) kg m^{-3}	
c) kg m^3	d) $\mathrm{kg}^{-1}m^3$	
43. There arem in 2000 mm?		1
a) 20 m	b) 0.002 m	
c) 2 m	d) 0.02 m	
44. Choose the one out of the followin	ng having the highest mass,	1
a) $3.011 imes 10^{22}$ atoms of oxygen	b) 1 g atom of C	
c) $\frac{1}{2}$ mole of CH ₄	d) 10 mL of water	
45. For the reaction		1
Fe_2O_3 (s) + 3 CO (g) \rightarrow 2 Fe (g) + 3 CO	O ₂ ,	
224 g of CO is available to react with	h 400 g Fe ₂ O ₃ , the yield of iron and CO ₂ , a	re
andrespectively:	2 2 3	
a) 210 g , 279 g	b) 279 g , 330 g	
c) 225 g, 279 g	d) 210 g ,290 g	
-, g , - · · · g		

46. 30.4 cm = mm.:		1
a) 0.304 mm	b) .0.030 mm	
c) 304 mm.	d) 3.04 mm	
47. There are L in 12.0 ml?		1
a) 0.10 L	b) 0.012 L	
c) 0.12 L	d) 0.0012 L	
48. The kelvin scale is related to cels	ius scale as :	1
a) K = °C + 100	b) K = °C + 273.15	
c) $K = {}^{\circ}C + 212$	d) $K = {}^{\circ}C + 32$	
49. The number of significant figure	s in 0.0101 is	1
a) 4	b) 2	
c) 3	d) 5	
50. How many atoms of hydrogen are	in 67.2 L of H at STP?	1
a) 5.612×10^{24}	b) 2.612×10^{24}	
c) 3.612x 10 ²⁴	d) 4.612 x 10 ²⁴	
51. Molecular formula represents		1
a) ratio of masses of various	b) whole number ratio of	
atoms present in a compound	different types of atoms present	
	in a molecule of a compound	
c) average fractionall ratio of	d) the exact number of different	
various atoms present in a	types of atoms present in a	
compound	molecule of a compound	
52. Molecular mass of glucose C_6H_1	$_2O_6)$ is	1
a) 180. 162 u	b) 198.162 u	
c) 206.162 u.	d) 192.162 u	
53. The gram molar mass of $CaCO_3$	is	1
a) 50 g	b) 100	
c) 150 u	d) 100 g	
54. The molarity of NaOH in a solution	n prepared by dissolving its 4.0 g in enou	gh 1
water to form 250 mL of the soluti	on is ,	
a) 0.002 M	b) 0.4 M	
c) 0.04M	d) 0.02 M 8	

55. The calculation of masses or, (sometimes volumes also) of the reactants and		1
the products involved in a chemical reaction is called		
a) molarity	b) stoichiometry	
c) normality	d) molality	
56. 5.6 litres of oxygen at NTP is equiva	lent to:	1
a) $\frac{1}{4}$ mole	b) $\frac{1}{8}$ mole	
•		
c) $\frac{1}{2}$ mole	d) 1 mole	
57. There are L in 0.05 ml?		1
a) 0.50 L	b) 0.0005 liters	
c) 0.00005 L	d) 5.0 liters	
58. A given compound always contains	exactly the same proportion of elements	1
by weight. This law is stated by		
a) Dalton	b) Proust	
c) Avagadro	d) Gay Lussac	
59. There are cms. in 0.101 mm . ?		1
a) 0.101 cms.	b) 1.010 cm	
c) 0.0101 cms.	d) 10.10 cm	
60. For the reaction		1
$2N_2H_4(l) + N_2O_4(l) \rightarrow 3N_2(g) + 4H_2O_4(l)$	O (1),	
Which is the limiting reagent for the	is reaction?	
a) N_2H_4	b) N_2O_4	
c) N ₂	d) H ₂ O	
61. The energy associated with the first	orbit in the hydrogen atom is -2.18 x	1
10^{-18} J/atom. What is the energy as	ssociated with the fifth orbit?	
a) -7.72 × 10^{-20} J/atom	b) -5.72 $\times 10^{-20}$ J/atom	
c) -3.72 × 10^{-20} J/atom	d) -8.68 $\times 10^{-20}$ J/atom	
62. Quantum mechanics is a theoretical	l science that deals with the study of the	1
a) motions of the microscopic	b) motions of the macroscopic	
objects that have only particle	objects that have both	
like properties	observable wave like and	
	particle like properties	
c) motions of the microscopic	d) motions of the macroscopic	
objects that have both	objects that have only particle	
observable wave like and	like properties	
particle like properties	•	
	9	

63. A model of atom in which the idea of orbits associated with definite energies was first given by		
a) Rutherford	b) James Chadwick	
c) Neils Bohr	d) J.J. Thomson	
64. Oil drop experiment is for determin	ing the	1
a) deviation of the electron.	b) mass of the electron	
c) number of electrons	d) charge on the electrons	
65. Around 10 Hz corresponds to the re	egion of the electromagnetic spectrum	1
a) ultraviolet region	b) infrared region	
c) visible light	d) microwave region	
66. Due to the presence of electrons in t	the inner shells, the electron in the outer	1
shell will not experience the full pos	sitive charge of the nucleus (Z _e). This is	
known as		
a) shielding of the outer shell	b) charge stealing by inner shell	
electrons from the nucleus by	electrons from the outer shell	
the inner shell electrons	electrons	
c) charge stealing by outer shell	d) shielding of the inner shell	
electrons from the inner shell	electrons from the nucleus by	
electrons	the outer shell electrons	
67. An element with mass number 81 co	ontains 31.7 % more neutrons as	1
compared to protons. Assign the ato	omic symbol.	
a) $^{81}_{35}\mathrm{Cl}$	b) $^{81}_{35}\mathrm{Ag}$	
c) $^{81}_{35}\mathrm{S}$	d) $^{81}_{35}\mathrm{Br}$	
68. The electronic configuration $1s^22s^2$	$^22p^1$ belongs to	1
a) Boron	b) carbon	
c) Beryllium	d) lithium	
69. In the emission spectrum of hydrog	en atom, the Balmer series falls in the	1
a) Ultraviolet region	b) X - ray region	
c) Infra-red region	d) visible region	
70. Which of the following orbitals are	not possible?	1
a) 3s	b) 3p	
c) 4d	d) 3f	
71. de-Broglie equation is		1
a) $\lambda = \frac{hv}{m}$	b) $\lambda = \frac{mv}{h}$	
c) λ = hmv	d) $\lambda = \frac{h}{mv}$	
	10	

72. The electrons are ejected from the metal surface as soon as the beam of light		1	
	strikes the surface is called a) Faraday's cathode ray discharge model c) Photoelectric effect	b) Thomson model for electron d) Planck's quantum theory	
		of electrons in an orbit / principal energy	1
	level n is	or electrons in an orbit / principal energy	1
		1-) 0	
	a) 2n ²	b) 2n	
	c) 2n-1	d) n^2	
	74. Give the number of electrons in the	species, 2 and $O_2^+.$	1
	a) 16 and 8	b) 16 and 14	
	c) 16 and 15	d) 32 and 16	
	75. Wave number of yellow radiations h	naving wavelength of 5800 $A^{ m 0}$.	1
	a) $1.72 imes 10^2 m^{-1}$	b) $1.72 \times 10^5 m^{-1}$	
	c) $1.72 \times 10^6 m^{-1}$	d) $1.72 \times 10^3 m^{-1}$	
	76. Energy of an electron in stationary s	state is given by the formula	1
	$E_{n^m}R_H\left(1-rac{1}{\mathrm{n}^2} ight)$		
	where n = 1,2,3 In this equation	. R _{rr} is called	
	a) Rydberg's constant	b) Planck's constant	
	c) Proportionality constant	d) Avagadro's Number	
	77. The wavelength of a ball of mass 0.1	kg moving with a velocity of 10 ms will	1
	be		
	a) 7.626×10^{-34} m	b) 6.626 × 10 ⁻³⁴ m	
	c) 6.626 × 10 ³⁴ m	d) 6.626 × 10 ⁻³⁵ m	
	78. Radio frequency region of the electr	- ,	1
	broadcasting. It is	O I	
	a) Around 10^6 Hz	b) Around $10^{15}\mathrm{Hz}$	
	c) Around 10^{13} Hz	d) Around 10^{10} Hz	
		electrons and 35 neutrons. The electronic	1
	configuration of an element		_
		114 20 20 60 20 4 20 16 4 2	
	a) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10}$	b) 1s ² 2s ² 2p ⁶ 3s ² 3p 4s ² 3d ⁶ 4s ²	
		$4p^2$	
	c) $1s^2 2s^2 2p^6 3s^2 3p^5 4s^1 3d^9 4s^2$	d) $1s^2 2s^2 2p^6 3s^2 3p 4s^2 3d^8 4s^2$	
	80. The commonly occurring isotopes of	f carbon atoms are: 12 C, $_6$ 13 C, $_6$ 14 C . They	1

contain:			
a) 7, 8 and 9 neutrons 6 protons	b) 6, 8 and 9 neutrons and 6 protons		
c) 6, 7 and 9 neutrons and 6	d) 6, 7 and 8 neutrons and 6		
protons	protons		
	D. 1		
01 It is a handy back containing incom	Biology	1	
identification of species found in pa	uctions as to occurrence, collection and	1	
a) Monograph	b) Manual		
c) Flora	d) Key		
82. The number of species that are known		1	
a) 2 – 4 million	b) 1.7 – 1.8 million		
c) 5,000 – 10,000	d) 5 – 30 million		
83. What is the difference between the	taxonomic categories of division and	1	
phylum?			
a) Division is same as kingdom	b) Division is more inclusive		
while phylum is more exclusive	category.		
than division.			
c) Division refers to plants	d) Phylum is more inclusive		
whereas phylum refers to	category.		
animals			
84. A group of closely related classes is	s called	1	
a) Genus	b) Family		
c) Phylum	d) Order		
85. Scientific study of diversity of orga	nism and their evolutionary relationship is	1	
called			
a) Taxonomy	b) Morphology		
c) Systamatics	d) Anatomy		
86. Larger animals like birds and man	nmals are usually stuffed and preserved in	1	
a) Herbarium	b) Park		
c) Museum	d) Zoo		
87. It is a handy book containing instr	ructions of occurrence, collection and		1
identification of species found in pa	articular area.		

a) Manual	b) Monograph	
c) Key	d) Flora	
88. The first step in taxonomy is		1
a) Description	b) Naming	
c) Identification	d) Classification	
89. Which of the following characteris	tics of living beings, can also be observed in	1
non-livings?		
a) Reproduction	b) Respiration	
c) Stimulation	d) Growth	
90. Which is the topmost taxa in zoolog	y?	1
a) Phylum	b) Division	
c) Order	d) Kingdom	
91. International Code of Biological Nor	nenclature is applied to	1
a) Plants	b) Both Plants and Animals	
c) Virus	d) Animals	
92. Why are biological names written in	n Italics?	1
a) To show Italian origin	b) To show British origin	
c) To show French origin	d) To show Latin origin	
93. Related genera belongs to same		1
a) Species	b) Variety	
c) Family	d) Breed	
94. The organism that completely lack a	cell wall and are smallest living cell	1
known that can survive without oxy	gen is	
a) Bacteriophages	b) Virus	
c) Yeast	d) Mycoplasma	
95. A plant that is partially heterotroph	ic is	1
a) Drosera	b) Guava	
c) Orange	d) Utricularias	
96.All prokaryotic, unicellular organism	ns are included under kingdom	1
a) Monera	b) Fungi	
c) Protista	d) Animalia	
97. Which criterion made Fungi to be pl	aced in separate groups?	l
a) Cell wall	b) Cell type	
c) Mode of nutrition	d) Nuclear membrane	
	13	

98. Identify the virus in figure given b	elow	1
a) Bacteriophage	b) HIV	
c) TMV	d) Retrovirus	
99. A peculiar group of dual organism	which are formed by an association	1
between an algae and a fungus.		
a) Mushroom	b) Yeast	
c) Lichens	d) Mucor	
100. A peculiar group of dual organism	n which are formed by an association	1
between an algae and a fungus.		
a) Mushroom	b) Yeast	
c) Lichens	d) Mucor	
101. Which one is important in nutries	nt recycle and act as decomposer and	1
mineralisers of the biosphere		
a) Algae	b) Protozoa	
c) Fungi	d) Amphibians	
102. Which of the following is a fungal infection?		1
a) Ringworm	b) Typhoid	
c) AIDS	d) Cholera	
103. In which class of fungi the mushr	room belongs to	1
a) Basidiomycetes	b) Deuteromycetes	
c) Ascomycetes	d) Phycomycetes	
104. Which bacteria help in oxidising	inorganic substances?	1
a) Chemosynthetic autotrophic	b) None of these	
bacteria		
c) Cyanobacteria	d) Heterotrophic bacteria	
105. Which of the following organism	is a good indicator of pollution in an	1
environment?		
a) Bacteria	b) Lichens	
c) amoeba	d) Fungi	
106. Which archaebacteria is present in the guts of ruminant animals such as cows 1		
and buffaloes?		
	1.4	

	a) Thermoacidophiles	b) Holophiles	
	c) Heterogens	d) Methanogens	
107. Which of the following is not among cryptogams?			1
	a) Bryophyta	b) Algae	
	c) Pteridophyta	d) Gymnosperm	
108.	The main plant body of the bryoph	yte is	1
	a) Haploid	b) Diplo-haplontic	
	c) Haplo-diplontic	d) Diploid	
109.	All seed bearing plant, alternation	of generation is	1
	a) Haplo-diplontic	b) None of these	
	c) Haplontic	d) Diplontic	
110.	Which of the following division cor	ntains the largest number of plant species?	1
	a) Pteridophyta	b) Angiosperm	
	c) Gymnosperm	d) Bryophyta	
111.	Phloem of angiosperms differ from	that of other vascular plants by the	1
1	presence of		
	a) Albuminous cells	b) Trachieds	
	c) Companion cells	d) Vessels	
112.	Top shaped multinucleate male gar	metes and mature seeds with one embryo	1
1	naving two cotyledons are character	ristic feature of	
	a) Cycas	b) Polypetalous angiosperms	
	c) Conifers	d) Gametopetalous angiosperms	
113.	The structure formed by germinate	ed fern spore is	1
	a) Prothallus	b) Thallus	
	c) Germpore	d) Embryo	
114.	Non-flowering plants belongs to		1
	a) Dicots	b) Monocots	
	c) Phenerogams	d) Cryptogams	
		1	
	a) Pinus	b) Sequoia	
	c) Cedrus	d) Cycas	
116	. A plant that forms fruits but not se	eds is	1
	a) Sweet potato	b) Potato	
	c) Banana	d) Radish	
15			

117. The phenomenon of having two types of spores by the same plant is called 1		1
a) Heterogamy	b) Bispory	
c) Heterospory	d) Megaspory	
118. Fusion between one large and non	-motile female gamete with smaller, motile	1
male gamete is termed as		
a) Homogamous	b) Anisogamous	
c) Isogamous	d) Oogmous	
119. A plant that forms seeds but no fruits is		1
a) radish	b) Pinus	
c) Potato	d) Mustard	
120. The megasporangium of naked seed plants are called		1
a) Ovary	b) Thalamus	
c) Ovule	d) Anther	

Solution

Class 11 - Physics

Unit Test 1 (2019-20)

Section A

Explanation:

$$\mathbf{P} = \frac{a^3 b^2}{\sqrt{c} d}$$

Maximum fractional error in P is given by

$$\begin{split} &\frac{\Delta P}{P} = \pm \left(3\frac{\Delta a}{a} + 2\frac{\Delta b}{b} + \frac{1}{3}\frac{\Delta c}{c} + \frac{\Delta d}{d} \right) \\ = &> \frac{\Delta P}{P} = \pm \left(3\frac{1}{100} + 2\frac{3}{100} + \frac{1}{2}\frac{4}{100} + \frac{2}{100} \right) = > \frac{\Delta P}{P} = \pm 0.13 \\ &\text{Percentage error in P} = \frac{\Delta P}{P} \times 100 = 0.13 \times 100 = 13\% \end{split}$$

2. (d)

meter, kilogram, second, ampere, Kelvin, mole and candela

Explanation:

The SI base units and their physical quantities are the metre for measurement of length, the kilogram for mass, the second for time, the ampere for electric current, the kelvin for temperature, the candela for luminous intensity, and the mole for amount of substance.

3. (d)

work

Explanation:

The joule (symbol J), is a derived unit of energy in the International System of Units. It is equal to the energy transferred to (or work done on) an object when

a force of one newton acts on that object in the direction of its motion through a distance of one metre (1 newton metre or $N \cdot m$).

4. (c)

4

Explanation:

There are three rules on determining how many significant figures are in a number:

- Non-zero digits are always significant.
- Any zeros between two significant digits are significant.
- A final zero or trailing zeros in the decimal portion ONLY are significant. So keeping these rules in mind, there are 4 significant digit.
- 5. (c)

5

Explanation:

There are three rules on determining how many significant figures are in a number:

- Non-zero digits are always significant.
- Any zeros between two significant digits are significant.
- A final zero or trailing zeros in the decimal portion ONLY are significant. Keeping these rules in mind, we can say that there are 5 significant digits.
- 6. (c)

length, mass, time, electric current, thermodynamic temperature, amount of substance, and luminous intensity

Explanation:

A base quantity is chosen and arbitrarily defined, rather than being derived from a combination of other physical quantities. The 7 base quantities are:

PHYSICAL QUANTITY	BASE SI UNIT
Mass (m)	Kilogram (Kg)
Length (ll)	Metre (m)
Time (t)	Second (s)

Current (II)	Ampere (A)
Temperature (T)	Kelvin (K)
Amount of sub. (n)	Molar (mol)
Luminous Intensity (L)	Candela (cd

7. (c)

3.8

Explanation:

Value of P is given as 3.763.

By rounding off the given value to the first decimal place,

we get P = 3.8.

8. (b)

 $\cong 10^4$

Explanation:

Radius of hydrogen atom, $r = 0.5 = 0.5 \times 10^{-10}$ m

Volume of hydrogen atom = $\frac{4}{3} imes \frac{22}{7} imes (0.5 imes 10^{-10})^3$

= $0.524 imes 10^{-30} m^3$

Now, 1 mole of hydrogen contains 6.023×10^{23} hydrogen atoms.

Volume of 1 mole of hydrogen atoms, $V_a = 6.023 \times 10^{23} \times 0.524 \times 10^{-30}$

$$= 3.16 \times 10^{-7} \text{ m}^3$$

Molar volume of 1 mole of hydrogen atoms at STP,

$$V_{\rm m}$$
 = 22.4 L = 22.4 × 10⁻³ m³

$$v_{\rm m}$$
 22.4 \simeq 22.4 \times 10 \simeq 11 \simeq \simeq $\frac{V_m}{V_a} = \frac{22.4 \times 10^{-3}}{3.16 \times 10^{-7}} = 7.08 \times 10^{-4}$ $= \simeq 10^{-4}$

9. (d)

 $\frac{b}{\theta}$

Parallax Method of Measurement: Astronomers use an effect called parallax to measure distances to nearby stars. Parallax is the apparent displacement of an object because of a change in the observer's point of view.

To measure the distance D of a far away planet S by the parallax method, We observe it from two different positions (observatories) A and B on the Earth, separated by distance AB = b at the same time as shown in the given figure. We measure the angle between the two directions along which the planet is viewed at these two points. The \angle ASB in the figure represented by symbol θ is called the parallax angle or parallactic angle.

As the planet is very far away, bD<<1 and therefore, θ is very small. Then we approximately take AB as an arc of length b of a circle with center at S and the distance D as the radius AS = BS so that AB = b = D θ where θ is in radians.

$$D = \frac{b}{\theta}$$

10. (c)

are units of physical quantity that can be expressed as a combination of fundamental physical quantities

Explanation:

Derived units are units which may be expressed in terms of base units by means of mathematical symbols of multiplication and division.

For example, the SI derived unit of area is the square metre (m²), and the SI derived unit of density is the kilogram per cubic metre (kg/m³ or kg m⁻³). The names of SI units are written in lowercase.

11. (a)

5, 3, 2

Explanation:

There are three rules on determining how many significant figures are in a number:

- Non-zero digits are always significant.
- Any zeros between two significant digits are significant.
- A final zero or trailing zeros in the decimal portion ONLY are significant.

Keeping these rules in mind, we can say that only 5,3,2 are significant digits.

12. (b)

34.2

Explanation:

The rules for rounding off are following.

- If the first non-significant digit is less than 5, then the least significant digit remains unchanged.
- If the first non-significant digit is greater than 5, the least significant digit is incremented by 1.
- If the first non-significant digit is 5, the least significant digit can either be incremented or left unchanged.
- All non-significant digits are removed.

So rounding off 34.216 upto 4 digits is 34.22 and upto 3 digits is 34.2

13. (b)

0.02 g

Explanation:

Difference in masses = 20.17 - 20.15 = 0.02 g

In subtraction, the final result should retain as many decimal places as there are in the number with the least decimal places.

14. (b)

deducing relations among the physical quantities

Explanation:

Dimensional analysis is also used to deduce the relation between two or more physical quantities.

If we know the degree of dependence of a physical quantity on another, that is the degree to which one quantity changes with the change in another, we can use the principle of consistency of two expressions to find the equation relating these two quantities.

15. (b)

$$\delta \mathrm{a} = (\Delta \mathrm{a}_{\mathrm{mean}}/\mathrm{a}_{\mathrm{mean}})$$
100%

Explanation:

Percentage Error: It is the relative error measured in percentage.

So Percentage Error
$$\delta a=rac{mean~absolute~value}{mean~value} imes 100\%$$
 $\delta a=rac{\Delta a_{mean}}{a_{mean}} imes 100\%$

16. (a)

process of comparing with a standard using an instrument

Explanation:

The Measurement of a given quantity is essentially an act or result of comparison between a quantity whose magnitude (amount) is unknown, with a similar quantity whose magnitude (amount) is known, the latter quantity being called a Standard.

17. (b)

quantities such as length, mass, time, electric current, thermodynamic temperature, amount of substance, and luminous intensity

Explanation:

A physical quantity is a physical property of a phenomenon, body, or substance, that can be quantified by measurement. A physical quantity can be expressed as the combination of a magnitude expressed by a number – usually a real number – and a unit.

All these given above can be expressed as explained so these are physical quantity.

18. (b)

 8.72 m^2

length, l = 4.234 m breadth,b = 1.005 m thickness, t = 2.01 cm =
$$2.01 \times 10^{-2}$$
 m Area of the sheet = $2 (l \times b + b \times t + t \times l)$ = $2 (4.234 \times 1.005 + 1.005 \times 0.0201 + 0.0201 \times 4.234) = 2 (4.3604739) = 8.7209478$ m $_2$

As area can contain a maximum of three significant digits, therefore, rounding off, we get Area = 8.72 m^2

19. (a)

 $\cong 4.67 imes 10^3 kgm^{-3}$. In the solid phase atoms are tightly packed, so atomic mass density is not close to the mass density of the solid.

Explanation:

Diameter of sodium atom = 2.5 A°

Radius of sodium atom r = 1.25A° = $1.25 \times 10^{-10} m$

Atomic Volume = Total Volume × No of molecules

$$egin{align*} &=rac{4}{3}\pi r^3 imes N \ &=rac{4}{3} imesrac{22}{7} imes(1.25 imes10^{-10}) imes6.023 imes10^{23} \ &=4.93 imes10^{-6}m^3 \end{split}$$

Mass of sodium atom = 23 g = $23 \times 10^{-3} kg$

Average mass density = $\frac{Mass}{volume}$

$$=rac{23 imes10^{-3}}{4.93 imes10^{-6}}$$
 $=4.67 imes10^3 kgm^{-3}$

Hence, the density of sodium atom and the density of sodium in its crystalline phase are not in the same order. This is because in solid phase, atoms are closely packed. Thus, the inter-atomic separation is very small in the crystalline phase.

20. (d)

5

Explanation:

There are three rules on determining how many significant figures are in a number:

- Non-zero digits are always significant.
- Any zeros between two significant digits are significant.
- A final zero or trailing zeros in the decimal portion ONLY are significant.

Keeping these rules in mind, we can say that there are 5 significant digits.

21. (a)

change in position: $\Delta {
m x} = {
m x}_2 - {
m x}_1$

Displacement is defined to be the change in position of an object. It can be defined mathematically with the following equation:

$$Displacement = \Delta x = x_2 - x_1$$

 x_2 refers to the value of the final position.

 x_1 refers to the value of the initial position.

 Δx is the symbol used to represent displacement.

22. (d)

8.94

Explanation:

Initial velocity u = 0

Acceleration a = 10.0 m/s^2

Distance covered s = 400 m

Time taken t =?

We know

$$s = ut + \frac{1}{2}at^2$$

=> $400 = 0 \times t + \frac{1}{2} \times 10 \times t^2$
=> $400 = 5t^2$
=> $t^2 = 80$
=> $t = \sqrt{80} = 8.94 s$

23. (b)

2.04

Explanation:

Initial velocity u = 20.0 m/s

At maximum height it ll stop

So final velocity v = 0 m/s

Acceleration due to gravity $g = 9.8 \text{ m/s}^2$

Time taken to reach maximum height = t

We know

$$v = u + at$$

$$\Rightarrow 0 = 20 + (-9.8)t$$

 $=>t=rac{-20}{-9.8}=2.04~s~$ [g is taken negative because it is in opposite direction of motion.]

6

Explanation:

Initial velocity u = 2 m/s

final velocity = v m/s

Time duration = final time - initial time = 2-0 = 2 s

acceleration $a = 2 \text{ m/s}^2$

We know,

$$v = u + at$$

$$=> v = 2 + 2 \times 2$$

$$=> v = 6 \text{ m/s}$$

25. (d)

2.56

Explanation:

it will change direction When the speed is zero.

Velocity v =
$$\frac{dx}{dt} = 3 - 8t$$

Put v = 0, we get

$$=>3-8t=0$$

$$=>t=\frac{3}{8}$$

It ll change direction at $t=\frac{3}{8}$

Position at this time.

Position at this time.
$$x(\frac{3}{8}) = 2 + 3(\frac{3}{8}) - 4(\frac{3}{8})^{2}$$

$$= 2 + \frac{9}{8} - \frac{9}{16}$$

$$= \frac{32 + 18 - 9}{16}$$

$$= \frac{41}{16}$$

$$=2+\frac{9}{8}-\frac{9}{16}$$

$$=\frac{32+18-1}{16}$$

$$=\frac{41}{16}$$

$$= 2.56 \text{ m}$$

26. (a)

-0.448

Explanation:

Let initial velocity = u

Final velocity v = 2.80 m/s

Distance covered s = 40.0 m

Time taken t = 8.50 s

We know,

$$v = u + at$$

$$=> v-u = at(1)$$

Also

$$s = ut + \frac{1}{2}at^2$$

From (1) put value of at, we get

$$=> s = ut + \frac{1}{2}t(v-u)$$

$$=>s=ut+rac{1}{2}tv-rac{1}{2}ut$$

$$=>s=rac{1}{2}ut+rac{1}{2}tv$$

Put all the given values, we get

$$=>40=\frac{1}{2}\times u\times 8.5+\frac{1}{2}\times 2.8\times 8.5$$

$$=>80-23.8=8.5u$$

$$=>8.5u=56.2$$

$$=> u = 6.61 \ m/s$$

Put value of u in (1), we get

$$=>2.8-6.61=8.5a$$

$$=>8.5a=-3.81$$

$$=> a = -0.448 \ m/s^2$$

Negative sign shows velocity is decreasing.

27. (d)

20.4

Explanation:

Initial velocity u = 20.0 m/s

At maximum height stone ll be stopped,

So final velocity v = 0 m/s

Acceleration due to gravity a = g =

 -9.8 m/s^2 (-ve Because it is in opposite direction of motion)

Let maximum height = s

We know,

$$v^2 - u^2 = 2as$$

$$\Rightarrow 0^2 - (20)^2 = 2 \times (-9.8)s$$

$$=>-400=-19.6s$$

$$=> s = \frac{-400}{-19.6} = 20.4 \ m$$

28. (b)

30

Explanation:

Initial velocity u = 30 m/s

As it stop so final velocity v = 0 m/s

Time t = 2 s

Distance covered = s

We know,

$$s = \frac{1}{2}(u+v)t$$

=> $s = \frac{1}{2}(30+0) \times 2$
=> $s = 30 \text{ m}$

29. (c)

scalar

Explanation:

Path length has no particular direction and it depends upon the path chosen to reach the destination where displacement of the destination is absolute no matter what path is used to get there. So it is scaler.

30. (a)

4.08

Explanation:

Initial velocity u = 20.0 m/s

At maximum height stone ll be stopped,

So final velocity v = 0 m/s

Acceleration due to gravity a = g =

-9.8 m/s² (-ve Because it is in opposite direction of motion)

Let maximum height = s

We know,

$$v^2 - u^2 = 2as$$

=> $0^2 - (20)^2 = 2 \times (-9.8)s$
=> $-400 = -19.6s$

$$=> s = \frac{-400}{-19.6} = 20.4 \ m$$

Time to cover this distance upward is given by

$$=> v - u = at$$

=> t =
$$\frac{-20}{-9.8}$$
 = 2.04 sec

Again to reach same level from where it has been thrown it have to cover same distance downward.

For this initial velocity u = 0

$$s = 20.4 \text{ m}$$

 $a = 9.8 \text{ m/s}^2$ (+be because motion is in same direction).

So,

$$=>20.4=0 imes t + rac{1}{2} imes 9.8t^2$$

$$=>t^2=\frac{20.4}{4.9}=4.16$$

$$=> t = \sqrt{4.16} = 2.04$$

Total time = 2.04 + 2.04 = 4.08 s

31. (b)

9

Explanation:

Initial velocity u = 3 m/s

Acceleration $a = 3 \text{ m/s}^2$

Initial time $t_1=0\ s$

Final time $t_2=2\ s$

Time taken t = 2-0= 2 s

Final velocity v = ?

We know,

$$v = u + at$$

$$=> v = 3 + 2 \times 3$$

$$=> v = 3 + 6 = 9 \ m/s^2$$

32. (a)

$$\lim_{t\to 0} \frac{\Delta x}{\Delta t}$$

Instantaneous velocity is the velocity of an object in motion at a specific point in time. This is determined similarly to average velocity, but we narrow the period of time so that it approaches zero.

The formula for instantaneous velocity is the limit as t approaches zero of the change in position over the change in t.

Mathematically,

$$\lim_{\mathbf{t}\to 0} \frac{\Delta x}{\Delta t}$$

Where x is the given function with respect to time t. The Instantaneous Velocity is expressed in m/s.

33. (c)

$$-15~\mathrm{ms}^{-2}$$

Explanation:

Initial velocity u = 30 m/s

As it stops then final velocity v = 0 m/s

Time taken t = 2.0 s

We know,

$$v-u = at$$

$$=>0-30=2a$$

=> a =
$$\frac{-30}{2}=-15~m/s^2$$

-ve sign shows velocity is decreasing.

34. (a)

2

Explanation:

Initial velocity u = 0 m/s

final velocity = v

Time t = 2 s

Acceleration a = 1 m/s^2

We know,

$$v = u + at$$

$$=> v = 0 + 1 \times 2$$

$$=> v = 2 \text{ m/s}$$

35. (d)

the change in position or displacement (Δx) divided by the time intervals (Δt), in which the displacement occurs

Explanation:

Average velocity is the displacement of an object, divided by the time it took to cover that distance.

$$V_{average} = \frac{\Delta x}{\Delta t}$$

Displacement is the straight line distance between the starting point and ending point of an object's motion.

Velocity is referred to as a vector quantity because it has both magnitude and direction.

36. (a)

5.0

Explanation:

Choose the positive direction of x-axis to be from south to north.

Then,
$$v_A = +54 \; kmh^{-1} = \; +15 \; ms^{-1} \ v_B = -90 \; kmh^{-1} = -25 \; ms^{-1}$$

Relative velocity of B with respect to A $= v_B - v_A = 15 - (-25) = 40 \; ms^{-1} \;$,

i.e. the train B appears to A to move with a speed of $40~\mathrm{ms^{-1}}$ from north to south.

Relative velocity of ground with respect to B

$$v=0-v_B=0-(-25)=25ms^{-1}$$

Now, let the velocity of the monkey with respect to ground be v_{M} .

Relative velocity of the monkey with respect to A,

$$v_{MA} = v_M - v_A = -\,18 kmh^{-1} = -\,5ms^{-1}$$

37. (b)

-3.0

$$x = 2.00 + 3.00t - 4.00t^2$$

At
$$t = 0$$
, we have $x = 2$,

$$2 = 2 + 3.0t-4t^2$$

$$=> t(3-4t) = 0$$

=> t = 0 and t =
$$\frac{3}{4}$$

Velocity v = $\frac{dx}{dt}$ = 3 - 8t
= 3 - 8 × $\frac{3}{4}$
= 3-6 = -3 m/s

Negative sign shows direction of velocity is opposite.

15.7

Explanation:

As start from rest,

So Initial velocity u = 0 m/s

Final velocity v = 20 m/s

Acceleration $a = 2 \text{ m/s}^2$

Let Time during this period = t_1

Also let distance covered $= s_1$

We know,

So,
$$20 - 0 = 2t_1$$

$$t_1=rac{20}{2}=10~s$$

Also,

$$v^2-u^2=2as_1$$

$$=>400-0=2\times 2\times s_{1}$$

$$s_1 = rac{400}{4} = 100~m$$

Now travel with constant speed of 20 m/s for time $t_2=20\ s$

Distance covered $s_2 = 20 imes 20 = 400~m$

Time taken to stop $t_3=5\ s$

Before stopping it covers distance $=s_3$

$$s_3 = \frac{1}{2}(20-0)5 = 50 \ m$$

Total distance covered = 100+400+50 = 550 m

Total time of motion t=10+20+5=35 s

Average velocity
$$v_{avg}=rac{total\ distance}{total\ time}$$
 $=rac{550}{35}$ = 15.7 m/s

-37.1

Explanation:

When the stone ll reach at the same point from where is was thrown it ll have same velocity but with opposite sign.

So initial velocity u = -20 m/s

Final velocity before hitting ground = v

Distance covered s = 50 m

Acceleration due to gravity $a = 9.8 \text{ m/s}^2$

We know

$$v^2 - u^2 = 2as$$

=> $v^2 - (-20)^2 = 2 \times 9.8 \times 50$
=> $v^2 - 400 = 980$
=> $v^2 = 1380$
=> $v = \sqrt{1380} = \pm 37.1$

As this velocity is in opposite direction is initial velocity so sign ll be negative.

$$v = -37.1 \text{ m/s}$$

6.61

Explanation:

Let initial velocity = u

Final velocity v = 2.80 m/s

Distance covered s = 40.0 m

Time taken t = 8.50 s

We know,

$$v = u + at$$

$$=> v-u = at(1)$$

Also

$$s = ut + \frac{1}{2}at^2$$

From (1) put value of at, we get

$$=> s = ut + \frac{1}{2}t(v-u)$$

$$=> s = ut + \frac{1}{2}tv - \frac{1}{2}ut$$

$$=>s=rac{1}{2}ut+rac{1}{2}tv$$

Put all the given values, we get

$$=>40=\frac{1}{2} imes u imes 8.5 + \frac{1}{2} imes 2.8 imes 8.5$$

$$=>80-23.8=8.5u$$

$$=>8.5u=56.2$$

$$=>u=6.61~m/s$$

Solution

Class 11 - Chemistry MCQ-(2019-20)

Section A

41. (b)

equal

Explanation:

Avogadro's law states that " equal volumes of all gases at same temperature and pressure contain **equal** number of molecules. "

42. (b)

 ${
m kg}\ m^{-3}$

Explanation:

Since, density

= mass / volume;

and SI unit of mass is kg and that of volume is m^3

:. using these SI units the unit of density is derived through dimensional analysis :

density = mass / volume

$$= kg / m^3$$

or, =
$$kg m^{-3}$$

43. (c)

2 m

Explanation:

Since, 1 m

=1000 mm.

or, 1 mm

$$= \frac{1}{1000} m$$

∴2000 mm

=[
$$\frac{1}{1000} X2000$$
] m

= 2 m

44. (b)

1 g atom of C

Explanation:

Calculations & inference:

1 g atom of C

1 gm atomic mass of C

= 12.00 g

One mole of CH₄

= gram molar mass of CH_4

= 16 g

 \therefore mass of $\frac{1}{2}$ mole of CH₄ = 8.0 g

Mass of 10 ml of water

= 10 gms

(since, density of water = 1 gm/ml)

Mass of 6.022×10^{22} atoms of Oxygen

Since, 6.022×10^{23} atoms of Oxygen weighs

= its gm atomic mass (ie.16 g)

: mass of 3.011 \times 10²³ atoms of 0

= 8.0 g.

 \therefore mass of 3.011 imes 10²² atoms of O

= 0.80 g

Thus , the mass of 1 g atom of Carbon is highest out of the above .

45. (b)

279 g, 330 g

Explanation:

Calculations:

i. Convert the amounts given into number of moles,

Moles of CO

$$= \left(\frac{224}{28}\right)$$

=8 moles

Moles of Fe₂O₃

$$=(\frac{400}{159.69})$$

= 2.50 moles.

ii. Stoichiometric calculations,

3 moles of CO is needed for 1 mole of Fe_2O_3

∴ 8 moles of CO will require

$$= \frac{8X1}{3} = \frac{8\times1}{3} \text{ mole}$$

= 2.66 mole of Fe_2O_3 ,

Thus it is inferred that a lesser number of moles of Fe_2O_3 has been taken to react & hence Fe_2O_3 is limiting reagent.

Again , 1 mole of Fe_2O_3 produces 2 mole of Fe

∴ 2.5 mole of Fe₂O₃ will produce

= (
$$2.5 \times 2$$
) moles of Fe

= 5 moles of Fe

= (molar mass of Fe \times 5) g

$$= (55.845 \times 5)g$$

or
$$\approx$$
 279 g of Fe.

Further , 1 mole of Fe_2O_3 produces 3 mole of CO_2

∴ 2.5 mole of Fe₂O₃ will produce

= (
$$3 \times 2.5$$
) moles of CO_2]

7.5 mole of CO_2

 \therefore mass of CO_2

= ($7.5 \times \text{molar mass of CO}_2$) g

=
$$(7.5 \times 44)g$$

=330g.of CO₂

46. (c)

304 mm.

Explanation:

Since,

1cm

=10 mm

∴ 30.4 cm

- $= (30.4 \times 10) \text{ mm}.$
- = 304 mm.
- 47. (b)

0.012 L

Explanation:

Since, 1L

=1000 ml

∴ 12 ml

$$=\frac{12}{1000}$$
 L

= 0.012 L

48. (b)

 $K = {}^{\circ}C + 273.15$

Explanation:

The relation between Kelvin scale & Celcius scale of temperatures is -

 $K = {}^{\circ}C + 273.15$

Such a relation is based upon the experimental findings and subsequent conclusion of Charle's law .

The Kelvin scale is also termed as "absolute scale of temperature."

It is interesting to note that temperature below $0^{\rm o}$ C (ie. negative values) are possible in Celcius scale but in Kelvin scale , negative temperature is not possible .

49. (c)

3

Explanation:

Zero/s preceding to first non-zero digit is non-significant.

Hence, the number of significant digit in 0.0101 is 3

50. (c)

 3.612×10^{24}

Explanation:

Calculations

Step 1

Number of moles of H₂ in 67.2 L of H₂

$$=\frac{67.2}{22.4}$$

=3 moles

Step 2 /

Number of molecules in 1 moles of H₂

=6.02 x 10^{23} molecules of H_2

Since H₂ is a diatomic gas the number of atoms in 1 mole of H₂

$$= (2 \times 6.02 \times 10^{23})$$

 $= 12.04 \times 10^{23}$ atoms of H atoms

(since , one molecule of H_2 contains 2 atoms).

... Number of atoms in 3 moles of H₂

$$= (3 \times 12.04 \times 10^{23})$$

$=3.612 \times 10^{24}$ atoms of H.

51. (d)

the exact number of different types of atoms present in a molecule of a compound

Explanation:

Molecular formula is the exact no. of atoms present in a molecule of a compound.

Molecular formula of a compound is related with its empirical formula as,

Mollecular formula = (Empirical formula) $_{n}$

where n represents a positive integer .

52. (a)

180. 162 u

Explanation:

Molecular mass of Glucose is calculated using the relation:

Molecular mass

= \sum (6*atomic mass of C , 12* atomic mass of H , 6* atomic mass of O) u

: substituting the respective atomic masses we get,

Molecular mass of glucose ($C_6\,H_{12}\,O_6$)

= 180.162 u.

53. (d)

100 g

Explanation:

The gram molar mass of $Ca CO_3$ is calculated by,

- (i) adding up the atomic masses of Ca, C & 3 O atoms &,
- (ii) representing the molar mass in grams.

Thus, gram molar mass of Ca C O_3

= Σ [atomic mass of Ca , atomic mass of C , 3 x atomic mass of O]

$$= [40 + 12 + (3X16)]g$$

$$= (40 + 12 + 48) g$$

=100g

It should be noted that,

atomic mass of Ca

= 12

atomic mass of C

= 12

atomic mass of O

= 16

54. (b)

0.4 M

Explanation:

Since, Molarity

=
$$[\frac{molesof solute*}{volume of solution(mL)}X1000]M$$

.:. substituting the given values, we get-

Molarity (M)

$$= \frac{0.10}{250} X 1000 M$$

=0.4M

* moles of solute ie. NaOH = $\frac{4}{40}$ mole

.= 0.1 mol

55. (b)

stoichiometry

Explanation:

Stoichiometry is a method to express quantitative aspects of a chemical reaction .

Usually , the masses of reactants as well as those of products in a chemical reaction are calculated using corresponding balanced chemical equation . It is convenient and hence desirable to calculate volumes of gaseous reactants and products .

56. (a)

$$\frac{1}{4}$$
 mole

Explanation:

Since , 22.4 litres of oxygen

 \equiv 1 mole of oxygen

∴ 5.6 litres of oxygen

$$\equiv$$
 { $\frac{1*5.6}{22.4}$] moles of oxygen

$$\equiv \frac{1}{4}$$
 mole

57. (c)

Explanation:

Since, 1L

= 1000mL

or, 1mL

$$=\frac{1}{1000}L$$
 .

∴ 0.05mL

$$=\frac{1}{1000}X0.05L$$

= 0.00005 L.

58. (b)

Proust

Explanation:

The observation was first made by French chemist Joseph Proust, based on certain experiments conducted between 1798 and 1804.

Proust made the above statement known as "Proust's law" or "Law of definite composition" or "Law of constant composition"

59. (c)

0.0101 cms.

Explanation:

Since, 10 mm.

= 1 cm.

∴.0.101 mm .

$$= \frac{1X0.101}{10} cms.$$

= 0.0101 cms.

60. (b)

 N_2O_4

Explanation:

Chemical reactions rarely occur completely when exactly the right amounts of reactants are taken to react together to yield products as per its stoichiometry. One of the reactants will be used up, before another runs out. Thus, the reactant which is consumed first is known as limiting reagent For the given reaction,

$$2N_2H_4$$
 (l) + N_2O_4 (l) $\to 3N_2$ (g) + $4H_2O$ (l)

as per its stoichiometry, if only the right and exact amount of N_2O_4 is taken, the reaction may not go to completion. As such it would be consumed first & is, therefore, the **limiting reagent**.

61. (d)

$$-8.68 \times 10^{-20}$$
 J/atom

Explanation:

The energy of first (Bohr) orbit in hydrogen atom = $-2.17 \times 10^{-18}~Jatom^{-1}$ Energy of fifth orbit will be given by $E_n=E_1 imes rac{Z^2}{N^2}$

$$E_5 = rac{-2.17 imes 10^{-18}}{5^2} = 8.68 imes 10^{-20} Jatom^{-1}$$

62. (c)

motions of the microscopic objects that have both observable wave like and particle like properties

Explanation:

quantum mechanics, science dealing with the behaviour of matter and light on the atomic and subatomic scale. It attempts to describe and account for the properties of molecules and atoms and their constituents—electrons, protons, neutrons, and other more esoteric particles such as quarks and gluons. These properties include the interactions of the particles with one another and with electromagnetic radiation (i.e., light, X-rays, and gamma rays).

63. (c)

Neils Bohr

Explanation:

In 1913 Neils Bohr proposed a model of hydrogen atom based on the quantum theory of radiations. According to this, the electron in the hydrogen atom revolves around the nucleus only in certain selected circular orbits.

64. (d)

charge on the electrons

Explanation:

The oil drop experiment was performed by Robert A. Millikan and Harvey Fletcher in 1909 to measure the elementary electric charge (the charge of the electron). The experiment entailed observing tiny electrically charged droplets of oil located between two parallel metal surfaces, forming the plates of a capacitor.

65. (c)

visible light

Explanation:

Electromagnetic radiation in this range of wavelengths is called visible light or simply light. A typical human eye will respond to wavelengths from about 390 to 700 nm. In terms of frequency, this corresponds to a band in the vicinity of 430–770 THz.

66. (a)

shielding of the outer shell electrons from the nucleus by the inner shell electrons

Explanation:

Shielding effect can be defined as a reduction in the effective nuclear charge on the electron cloud, due to a difference in the attraction forces of the electrons on the nucleus. It is also referred to as the screening effect (or) atomic shielding.

67. (d)

 $^{81}_{35}{
m Br}$

Explanation:

P+N = 81

N=P+(0.317)P

Solving these two equation we get P=35

Atomic number of Bromine is 35.

So symbol is

 $^{81}_{35}\mathrm{Br}$

68. (a)

Boron

Explanation:

Boron is a chemical element with symbol B and atomic number 5. So electronic configuration of boron is $1s^22s^22p^1$

69. (d)

visible region

Explanation:

The spectral lines obtained as a result of transition of electrons from higher energy levels to the second energy level of a hydrogen atom give rise to Balmer Series which is in the visible region of electromagnetic spectrum.

70. (d)

3f

Explanation:

if n=3 then l=0,1,2 i.e. only 3s,3p,3d orbitals are possible.

71. (d)

$$\lambda = \frac{h}{mv}$$

Explanation:

Louis de-Broglie proposed that matter, like light, has a dual character.It exhibits wave as well as particle nature. The wavelength of the wave associated with a particle of mass m moving with velocity v is given by

$$\lambda = \frac{h}{mv}$$

72. (c)

Photoelectric effect

Explanation:

The photoelectric effect is the emission of electrons or other free carriers when light is shone onto a material. Electrons emitted in this manner can be called photo electrons.

73. (a)

 $2n^2$

Explanation:

Since the maximum number of electrons in each orbital is 2, the maximum number of electrons in an entire quantum level is $2n^2$.

74. (c)

16 and 15

Explanation:

atomic number O has atomic number = 8 so number of electrons in O_2 = 16 while in O_2^+ there is one unit positive charge so no. of electron =15.

75. (c)

$$1.72 \times 10^6 m^{-1}$$

Explanation:

Wave number is defined as the reciprocal of wavelength.

$$\bar{\nu} = \frac{1}{\lambda}$$

where, λ = wavelength = 5800 Å = $5.8 \times 10^{-7} m$ So, $\bar{\nu}=\frac{1}{5.8 \times 10^{-7}}=1.72 \times 10^6 m^{-1}$

76. (a)

Rydberg's constant

Explanation:

The Rydberg constant, symbol R_{∞} for heavy atoms or $R_{\rm H}$ for hydrogen, named after the Swedish physicist Johannes Rydberg, is a physical constant relating to atomic spectra, in the science of spectroscopy.

77. (b)

$$6.626 \times 10^{-34} \,\mathrm{m}$$

Explanation:

Given: mass = 0.1 kg Veloctiy = 10 m/s We know

$$\lambda = \frac{h}{mv}$$

Where h is Planck's constant.

$$\lambda = rac{6.626 imes 10^{-34}}{10 imes 0.1} = 6.626 imes 10^{-34} \, \mathrm{m}$$

78. (a)

Around $10^6~\mathrm{Hz}$

Explanation:

Radio frequency (RF) is any of the electromagnetic wave frequencies that lie in the range extending from around3 kHz to 300 GHz, which include those frequencies used in radio communication or radar. RF usually refers to electrical rather than mechanical oscillations

79. (a)

$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10}$$

Explanation:

No of electron = No of protons

So electronic configuration = $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^1\ 3d^{10}$

80. (d)

6, 7 and 8 neutrons and 6 protons

Isotopes are atoms with the same number of protons but that have a different number of neutrons.

Atomic number of carbon = 6

So number of protons in each isotope = 6

Number of neutrons in $^{12}_6C$ = 12-6= 6

Number of neutrons in $^{13}_{6}C$ = 13-6= 7

Number of neutrons in $^{\circ}_{6}$ C= 14-6= 8

Solution

Class 11 - Biology

MCQ Test July

Section A

81. (b)

Manual

Explanation:

Manual is a handy book containing instructions as to occurrence, collection and identification of species found in particular area. It serves as important tools for classification of organisms.

82. (b)

1.7 - 1.8 million

Explanation:

Each different kind of plant, animal or organism represents a species. The number of species known and described ranges between 1.7-1.8 million. This refers to biodiversity or the number and types of organisms present on earth. Hence, the correct option is 1.7 - 1.8 million.

83. (c)

Division refers to plants whereas phylum refers to animals

Explanation:

In case of plants, classes with a few similar characters are assigned to a higher category called division, whereas phylum was used to refer animals. Hence, the correct option is Division refers to plants whereas phylum refers to animals.

84. (c)

Phylum

Explanation:

Genus comprises a group of related species, Family has a group of related genera, order has a group of related family. Hence, the correct option is Phylum.

85. (c)

Systamatics

Explanation:

Systematics is the scientific study of diversity of organism and their evolutionary relationship. Systematics is also known as taxonomy. It includes identification, nomenclature and classification.

86. (c)

Museum

Explanation:

Larger animals like birds and mammals are usually stuffed and preserved in museum. Hence, the correct choice is Museum.

87. (a)

Manual

Explanation:

Flora, manuals, monographs and catalogues are different means of recording descriptions. Manuals are useful in providing information for identification of names of species found in an area. Hence, the correct option is Manual.

88. (c)

Identification

Explanation:

The basics of taxonomy is identification, naming and classification of organisms are universally evolved under international codes. Hence, the correct option is Identification.

89. (d)

Growth

Explanation:

an icicle is a non-living but it grows

90. (a)

Phylum

In biology, a phylum is a level of classification or taxonomic rank below Kingdom. If we talk only about Zoology phylum is on top.

91. (b)

Both Plants and Animals

Explanation:

Since biology deals with both plants and animals, the international code of biological nomenclature is applied to both plants and animals. Hence, the correct option is Both (2) and (3).

92. (d)

To show Latin origin

Explanation:

At the time when biologist Carl Linnaeus (1707–1778) published the books that are now accepted as the starting point of binomial nomenclature, Latin was used in Western Europe as the common language of science, and scientific names were in Latin.

93. (c)

Family

Explanation:

Family is the group of genera having some common properties. So, related genera belongs to same family.

94. (d)

Mycoplasma

Explanation:

Mycoplasma is a genus of bacteria that lack a cell wall around their cell membrane. Without a cell wall, they are unaffected by many common antibiotics such as penicillin or other beta-lactam antibiotics that target cell wall synthesis.

Mycoplasma species are the smallest bacterial cells yet discovered, can survive without oxygen, and come in various shapes. For example, M. genitalium is

flask-shaped.

95. (a)

Drosera

Explanation:

Drosera plant is partially heterotrophic. This plants capture insects to fulfill its protein requirement although it performs photosynthesis also.

96. (a)

Monera

Explanation:

All prokaryotic, unicellular organisms are included in the kingdom Monera. The Eukaryotic unicellular organisms are placed in Protista kingdom.

97. (a)

Cell wall

Explanation:

The classification did not differentiate between the heterotrophic group – fungi, and the autotrophic green plants, though they also showed a characteristic difference in their walls composition – the fungi had chitin in their walls while the green plants had a cellulosic cell wall. When such characteristics were considered, the fungi were placed in a separate kingdom – Kingdom Fungi.

98. (a)

Bacteriophage

Explanation:

A bacteriophage is a virus that infects and replicates within a bacterium. Bacteriophages are composed of proteins that encapsulate a DNA or RNA genome, and may have relatively simple or elaborate structures.

99. (c)

Lichens

Explanation:

Symbiotic association between an algae and a fungus is called Lichens. Algae prepare food due to presence of chlorophyll and fungus absorbs nutrients and provide protection to algae.

100. (c)

Lichens

Explanation:

A lichen is a composite organism that arises from algae or cyanobacteria living among filaments of multiple fungi in a symbiotic relationship. The combined lichen has properties different from those of its component organisms.

101. (c)

Fungi

Explanation:

Fungi is important in nutrient cycle and acts as decomposer along with bacteria and mininerlisers of the biosphere to regular recycling of nutrients in the biosphere.

102. (a)

Ringworm

Explanation:

Ringworm, also known as dermatophytosis or tinea, is a fungal infection of the skin. The name "ringworm" is a misnomer, since the infection is caused by a fungus, not a worm. Ringworm infection can affect both humans and animals

103. (a)

Basidiomycetes

Explanation:

The mushroom belongs to class Basidiomyces to kingdom fungi.
Basidiomycetes produce basidiospores as reproductive units. The member of this group grows on dead and decaying matters.

104. (a)

Chemosynthetic autotrophic bacteria

Chemosynthetic autotrophic bacteria oxidise various inorganic substances such as nitrates, nitrites and ammonia and use the released energy for their ATP production. They play a great role in recycling nutrients like nitrogen, phosphorous, iron and sulphur.

105. (b)

Lichens

Explanation:

Lichens can be used as air pollution indicators, especially of the concentration of sulfur dioxide in the atmosphere. Lichens are plants that grow in exposed places such as rocks or tree bark.

106. (d)

Methanogens

Explanation:

Methanogens are present in the guts of several ruminant animals such as cows and buffaloes and they are responsible for the production of methane (biogas) from the dung of these animals.

107. (d)

Gymnosperm

Explanation:

The different types of organisms classified as cryptogams and where in our four kingdoms:

- Kingdom Eubacteria: Cyanobacteria (previously called blue-green algae)
- Kingdom Protista: Slime molds, green algae, other algal groups
- Kingdom Fungi: Basidiomycota mushrooms and their close relatives,
 Ascomycota cup fungi and their close relatives, and lichen
- Kingdom Plantae: Bryophytes (mosses, liverworts, and hornworts) and vascular cryptogams (ferns, horsetails, and club mosses)

108. (a)

Haploid

The main plant body of the bryophyte is haploid. It produces gametes, hence is called a gametophyte.

109. (d)

Diplontic

Explanation:

In diplontic life cycle, diploid sporophyte is the dominant, photosynthetic, independent phase of the plant. The gametophytic phase is represented by the single to few-celled haploid gametophyte .All seed bearing plants i.e., gymnosperms and angiosperms exhibits diplontic life cycle.

110. (b)

Angiosperm

Explanation:

Angiosperms are found in almost every habitat from forests and grasslands to sea margins and deserts. There are an estimated 352,000 species of flowering plants .

111. (c)

Companion cells

Explanation:

Gymnosperms and lower vascular plants have sieve cells as their sieve elements, while sieve tubes and companion cells are characteristic of flowering plants (angiosperms). Phloem transport food form leaves to all other parts of plants.

112. (a)

Cycas

Explanation:

Cycas produces top shaped multinucleate male gametes and mature seeds with one embryo having two cotyledons. Although, male and female gametes are generally uninucleate in gymnosperms.

113. (a)

Prothallus

Explanation:

Fern spores germinate to give rise to inconspicuous, small but multicellular, free-living, mostly photosynthetic thalloid gametophytes called prothallus. The gametophytes bear male and female sex organs called antheridia and archegonia.

114. (d)

Cryptogams

Explanation:

The cryptogams are flowerless and seedless plants. They are simple plants like algae, mosses and ferns which do not produce flowers, fruits and seeds.

Cryptogams are considered as lower plants.

115. (a)

Pinus

Explanation:

Roots in some genera of gymnosperms have fungal association in the form of mycorrhiza(Pinus).

116. (c)

Banana

Explanation:

Generally seeds are formed inside the fruits. But in banana viable seeds are not present .It is a parthenocarpic fruit.

117. (c)

Heterospory

Explanation:

The phenomenon of having two types of spores by the same plant is called heterospory. Male spores are small (micro) and female spores are comparatively larger (macro)than males like Selaginella and Salvinia are heterosporous.

118. (d)

Oogmous

Explanation:

Oogamy is a form of anisogamy (heterogamy) in which the female gamete (e.g. egg cell) is significantly larger than the male gamete and is non-motile.

119. (b)

Pinus

Explanation:

Pinus belongs to division gymnosperms. In gymnosperms seeds are formed but not inside the fruit. They are also called as plants with naked seeds.

120. (c)

Ovule

Explanation:

The cones bearing megasporophylls with ovules or megasporangia are called macrosporangiate or female strobili.